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Abstract 

Accurate segmentation of magnetic resonance (MR) images is crucial for providing doctors 
with effective quantitative information for diagnosis. However, the presence of weak 
boundaries, intensity inhomogeneity, and noise in the images poses challenges for 
segmentation models to achieve optimal results. While deep learning models can offer 
relatively accurate results, the scarcity of labeled medical imaging data increases the risk of 
overfitting. To tackle this issue, this paper proposes a novel fuzzy c-means (FCM) model that 
integrates a deep learning approach. To address the limited accuracy of traditional FCM 
models, which employ Euclidean distance as a distance measure, we introduce a measurement 
function based on the skewed normal distribution. This function enables us to capture more 
precise information about the distribution of the image. Additionally, we construct a 
regularization term based on the Kullback-Leibler (KL) divergence of high-confidence deep 
learning results. This regularization term helps enhance the final segmentation accuracy of the 
model. Moreover, we incorporate orthogonal basis functions to estimate the bias field and 
integrate it into the improved FCM method. This integration allows our method to 
simultaneously segment the image and estimate the bias field. The experimental results on 
both simulated and real brain MR images demonstrate the robustness of our method, 
highlighting its superiority over other advanced segmentation algorithms. 

Keywords: Multivariate skew-normal distribution, Fuzzy C-Means(FCM), KL divergence, 
U-Net, Brain MR images. 
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1. Introduction

Medical imaging is a valuable technique for visualizing the internal structure of the human
body, aiding in the diagnosis, treatment, and evaluation of diseases. Among the different 
medical imaging techniques available, magnetic resonance imaging (MRI) particularly stands 
out for its ability to provide detailed image information that assists in determining the nature 
of lesions. As a result, MRI is widely used in diagnosing brain diseases that involve damaged 
brain tissue. Accurate brain MR images segmentation is immense practical significance in 
assisting doctors with diagnosis. The objective of brain image segmentation is to categorize 
the tissues in the image into non-overlapping categories: gray matter (GM), white matter 
(WM), and cerebrospinal fluid (CSF). However, the low contrast between tissues increases the 
complexity of brain MR image segmentation. In addition, brain MR images are often affected 
by factors such as intensity inhomogeneity and noise, resulting in blurriness and intensity 
inhomogeneity, which pose significant challenges to segmentation. Numerous existing image 
segmentation methods leverage the discontinuity of image pixel intensity or the similarity of 
neighborhood pixels. Examples of conventional segmentation methods include thresholding 
algorithms[1], edge-based algorithms[2], region-based algorithms[3], and clustering-based 
algorithms[4][5][6]. Furthermore, deep learning[7][8][9], as an emerging technology, has 
shown exceptional performance in image segmentation tasks. 

The fuzzy c-means algorithm (FCM) is a widely used clustering-based algorithm known for 
its simplicity, efficiency, and ease of application. However, the original FCM algorithm has 
some limitations that hinder its performance in segmenting MR images. These limitations 
include the use of the non-robust Euclidean distance based dissimilarity function and the lack 
of consideration for spatial information between pixels. 

The FCM algorithm, which relies on the Euclidean distance of a dissimilarity function, has 
proven effective for spherical data but falls short when dealing with high-dimensional data 
(ED, [10]). To overcome this limitation, Chen and Zhang proposed a modification that 
employs a kernel-induced non-Euclidean distance as the dissimilarity function in their method 
(FCMS12, [11]). This alteration significantly enhances the algorithm's performance. However, 
interpreting the results becomes challenging due to the use of high-dimensional space to 
cluster prototypes. Another approach, introduced by Zhao et al. (MD, [12]), combines 
statistical methods with clustering methods by utilizing the Mahalanobis distance as the 
dissimilarity function for FCM (MFCM). This integration yields improved performance and 
robustness in clustering. In addition, the robust spatial constrained FCM method (RSCFCM,  
[13]) incorporates the Gaussian distribution as the dissimilarity function. By considering both 
prior and posterior probabilities, as well as spatial direction, this method achieves superior 
segmentation results. 

All the aforementioned methods assume that the distributions of brain MR images are 
symmetric. However, in some cases, brain MR images exhibit asymmetric distributions, which 
poses challenges for symmetric distribution-based methods to achieve satisfactory results 
(LPL, MSN2, MSN3, [14][15][16]). Fig. 1 displays the histograms of the brain MR image 
data sets from IBSR (16_3 and 7_8). The histogram of 16_3 exhibits a symmetric form, 
whereas the histogram of 7_8 displays an asymmetric form. Consequently, methods based on 
symmetric distributions are unable to accurately model the distributions of image data sets 
with asymmetric forms. In our previous work, we proposed an improved anisotropic 
Hierarchical Fuzzy c-means method (AMTHFCM, [17]). This method utilizes a hierarchical 
multivariate Student-t distribution to construct the dissimilarity function, allowing for the 
estimation of asymmetric distributions and effectively handling outliers. AMTHFCM has 
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shown the capability to yield more accurate results. However, determining the parameter of 
the inner class is challenging. To address this challenge, we drew on the work of Azzalini et 
al. (MSN1, [18]), who proposed a multivariate skew-normal distribution and highlighted the 
normal distribution as a specific instance of the skew-normal distribution when the data 
exhibits no skewness. Based on this, in our previous work, we proposed a spatially constrained 
anisotropic asymmetric finite mixture model (SCAAFMM, [19]) to segment images with 
asymmetric forms. 

 

 
Fig. 1. The histograms of the brain MR image data sets of IBSR (16_3 and 7_8). 

 
Any spatial information has not been considered in distribution-based methods, which 

makes them sensitive to noise. Researchers have proposed several improvements to enhance 
the accuracy of segmentation in MR images[11][20][21][22][23]. In the work of Chen et al. 
(FCMS12, [11]), they incorporated spatial information by considering the mean and median 
information of each neighbor, aiming to mitigate the impact of noise. However, determining 
both the clustering number and the weighting factor that governs the original image and the 
processed image remains a challenge. Krinidis et al. (FLICM, [21]) made enhancements to the 
FCM algorithm by incorporating a fuzzy information constraint term that considers both the 
gray level information of neighboring pixels and local information. This modification, known 
as FLICM, effectively suppresses noise interference while preserving image details. However, 
the FLICM has not been thoroughly derived mathematically and further investigation may be 
required in this aspect. In addition to considering the local neighborhood information of pixel 
gray levels, utilizing local membership information can help reduce the influence of noisy 
pixels on membership. The Kullback-Leibler (KL) divergence is a widely used measure to 
capture local membership information and the membership itself. Gharieb (LMKLFCM, [22]) 
proposed an improved FCM algorithm by incorporating local membership KL information 
into the objective function as the fuzzification and regularization term. This approach, known 
as LMKLFCM, effectively suppresses noise interference and smoothens the image boundaries. 
However, since LMKLFCM does not utilize enhanced image data, Gharieb (LMDKLFCM, 
[23]) further improved the anti-noise performance by incorporating a weighted distance term 
based on the enhanced data. This modification enhances the ability of LMDKLFCM to 
mitigate the impact of noise. 
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Due to the random initialization of membership and the presence of noise, clustering results 
can be unstable and suboptimal. In order to address this issue, researchers have explored 
algorithms that incorporate prior information to guide and correct membership errors during 
the clustering process. For instance, Wang et al.[24] utilized the membership of the filtered 
image as prior knowledge and coupled it with the membership function of the original image 
based on KL divergence (KLDFCM). This approach improved robustness to outliers and noise. 
Another approach was introduced by Yang et al.[25], who proposed a linked dimensionality 
reduction and K-means clustering method (LDRKCM). LDRKCM employed a deep neural 
network (DNN) to produce reduced-dimensional data and utilized the K-means algorithm. By 
leveraging deep learning techniques, LDRKCM obtained prior knowledge, which was then 
combined with the clustering method to enhance performance. 

Furthermore, the presence of bias field in MR images is caused by equipment and magnetic 
field effects during image acquisition. This phenomenon leads to variations in grey intensity 
within the same tissue. It has been found that intensity inhomogeneity affects brain MR image 
segmentation more significantly than noise[26]. Intensity inhomogeneity correction, a post-
processing technique, is commonly employed to mitigate or eliminate the bias field effect. 
Wells[26] proposed an adaptive technique, known as ASeg, for both correction and 
segmentation of MR images. Building on this work, Pham and Prince[27] introduced a 
smoothing term in the objective function based on Fuzzy C-means (FCM) to obtain a smooth 
bias field (AFCM). However, determining the optimal weight for the smoothing term in order 
to achieve the best segmentation outcome is a challenging task. Leemput[28] and Li[29] 
modeled the bias field by using a set of orthogonal basis functions to achieve better results. 
However, these methods did not consider spatial information, making them less robust to noise. 

Deep learning methods have the ability to extract feature information from the bottom to 
the top, leading to more accurate results. However, these methods often require Sufficient 
amount of training data. In the context of medical image analysis, obtaining pixel-level 
calibration data proves challenging due to the need for strong medical expertise to protect 
patient privacy and ensure data accuracy. As a result, deep learning based methods are at risk 
of overfitting and may struggle to achieve high-precision results. 

Based on the analysis presented above, we propose an innovative algorithm that combines 
the FCM algorithm based on multivariate skew-normal distribution with U-Net for brain MR 
image segmentation. Our approach addresses several key challenges. Firstly, we utilize the 
multivariate skew-normal distribution to define the dissimilarity function, providing 
robustness to asymmetric data. Secondly, we employ U-Net to achieve preliminary 
segmentation results with limited training data, thus serving as prior information for the target 
images. Thirdly, we define a regular term based on the KL divergence and prior probabilities, 
which helps in avoiding the selection of inappropriate initial parameters for FCM. Lastly, we 
model the bias field by using a set of orthogonal basis functions and integrate it into the 
improved FCM algorithm for simultaneous segmentation and estimation. Comparative 
evaluations demonstrate that our proposed method outperforms existing techniques, 
particularly in terms of segmentation accuracy. 

The main contributions of this article are as follows: 
1) We use the multivariate skew-normal distribution as the dissimilarity function in FCM. 

This distribution is more suitable for fitting the distribution of asymmetric data compared 
to traditional measures. This helps improve the accuracy of the clustering algorithm.  

2) We incorporate both prior and posterior membership information by utilizing KL 
divergence to formulate a regularization term. This term takes into account the 
membership of the original image as well as the prior membership acquired through 
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preliminary segmentation using U-Net. By leveraging this membership information, we 
are able to refine our approach and achieve better results.  

3) We introduce an innovative approach for simultaneously estimating the bias field and 
segmenting brain MR images.  

4) The experiments on both simulated and real brain MR images demonstrates the 
robustness and efficacy of the proposed method, particularly in the presence of challenges 
such as noise and intensity inhomogeneity.  

2. Theoretical basis 

2.1 Fuzzy c-means (FCM) Method 
 The FCM is a clustering algorithm that extends the K-means algorithm by incorporating 
fuzzy set theory. In FCM, each sample is allowed to belong to multiple categories 
simultaneously, with different membership values assigned to each category. This flexibility 
enables FCM to handle cases where samples may have uncertain or ambiguous membership. 
Image segmentation is a common application of FCM. The goal of image segmentation is to 
assign pixels to distinct categories based on their memberships. FCM achieves this by 
iteratively calculating and updating the clustering center and membership matrix. The 
clustering center represents the prototype of each category, while the membership matrix 
contains the membership degrees of each pixel to all categories.  

Given an image 𝑰𝑰 = {𝑰𝑰𝟏𝟏, 𝑰𝑰𝟐𝟐, … , 𝑰𝑰𝑵𝑵} containing 𝑵𝑵 pixels, where 𝑰𝑰𝒊𝒊 denotes the gray value 
of the 𝒊𝒊th pixel, the objective is to divide the image into 𝑲𝑲 distinct and meaningful regions. In 
FCM, each pixel belongs to one or more clusters with membership values ranging from 0 to 
1. The energy function 𝑬𝑬𝑭𝑭𝑭𝑭𝑭𝑭 is defined as the sum of the distances between each pixel in the 
image and the cluster centroids, weighted by their membership values: 

𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹 = ∑ ∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑�𝐼𝐼𝑖𝑖 , 𝑣𝑣𝑖𝑖�𝐾𝐾
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1                                                    (1) 

 Here, 𝑢𝑢𝑖𝑖𝑖𝑖 represents the membership of pixel 𝑖𝑖 to the 𝑗𝑗th region. The parameter 𝑚𝑚 controls 
the fuzziness of the clustering, where a larger value of 𝑚𝑚 leads to a more fuzzy partitioning. 
The function 𝑑𝑑(𝐼𝐼𝑖𝑖, 𝑣𝑣𝑖𝑖) is a Euclidean distance which represents the distance between pixel 𝑖𝑖 
and the centroid 𝑣𝑣𝑖𝑖  of the 𝑗𝑗th cluster. The membership values 𝑢𝑢𝑖𝑖𝑖𝑖  must satisfy 𝑢𝑢𝑖𝑖𝑖𝑖 ≥ 0 and 
∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝐾𝐾
𝑖𝑖=1 = 1. 

The FCM algorithm is known to be susceptible to noise and bias field interference during 
the segmentation of brain MR images. Additionally, the use of Euclidean distance alone, which 
only takes into account the mean values of tissues, without considering their distribution 
information, makes the algorithm highly sensitive to weak edges. 

2.2 Local membership KL divergence based FCM (LMKLFCM) 
The Fuzzy C-means (FCM) algorithm has a limitation in that it does not take spatial 
information into consideration. As a result, it is sensitive to noise and outliers influencing the 
clustering performance. To address this issue, Gharieb et al. [22] proposed an improvement to 
the FCM algorithm by introducing a regularization term based on the Kullback-Leibler (KL) 
divergence. Consequently, the objective function is redefined as: 

𝐸𝐸𝐿𝐿𝐹𝐹𝐾𝐾𝐿𝐿𝐹𝐹𝐹𝐹𝐹𝐹 = ∑ ∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝐾𝐾
𝑖𝑖=1 + 𝛽𝛽 ∑ ∑ 𝑢𝑢𝑖𝑖𝑖𝑖 𝑙𝑙𝑜𝑜𝑜𝑜(

𝑢𝑢𝑖𝑖𝑖𝑖
𝜋𝜋�𝑖𝑖𝑖𝑖

)𝐾𝐾
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1                           (2) 

where prior information 𝜋𝜋�𝑖𝑖𝑗𝑗 is the mean value of the membership values in local region of each 
pixel. It can be computed using the following equation: 
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𝜋𝜋�𝑖𝑖𝑖𝑖 = 1
𝑁𝑁𝑘𝑘
∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖∈𝑁𝑁𝑖𝑖                                                             (3) 

Then, the membership 𝑢𝑢𝑖𝑖𝑖𝑖 in LMKLFCM algorithm is given by: 

𝑢𝑢𝑖𝑖𝑖𝑖 = 𝜋𝜋�𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒�−𝑑𝑑𝑖𝑖𝑖𝑖/𝛽𝛽�
∑ 𝜋𝜋�𝑖𝑖𝑖𝑖𝐾𝐾
𝑖𝑖=1 𝑒𝑒𝑒𝑒𝑒𝑒�−𝑑𝑑𝑖𝑖𝑖𝑖/𝛽𝛽�

                                                   (4) 

Here, the coefficient 𝛽𝛽 serves as a weighting factor that controls the balance between the 
regularization term and the data term. By minimizing the KL divergence, it allows for 
similarity in the membership values within a local neighborhood, effectively smoothing noise. 
However, due to the isotropic nature of local information, the LMKLFCM algorithm tends to 
lose fine detail information, resulting in edge blurring. 

2.3 Skew-normal Distribution 
The distance function 𝑑𝑑(𝐼𝐼𝑖𝑖, 𝑣𝑣𝑖𝑖) in FCM is initially defined using Euclidean distance, which 
only takes into account the mean values of each tissue. However, in order to enhance accuracy, 
Ji et al. proposed a Normal distribution-based distance function in their work[13]. This 
function considers not only the mean but also the variance of each tissue, ultimately leading 
to more precise results. Nevertheless, the Normal distribution-based approach assumes that 
the brain MR images follow symmetric distributions. Unfortunately, in some cases, these 
images may exhibit asymmetric forms, making it difficult for symmetric distribution-based 
methods to achieve accurate results[19]. To address this issue, Azzalini introduced the concept 
of the multivariate skew-normal distribution. In his work[18], he explored the properties of 
this distribution and its ability to fit asymmetric distributions, allowing for more accurate 
modeling of brain MR images. 

Given a D-dimensional random vector 𝑿𝑿 , we assume that 𝑿𝑿  follows a skew-normal 
distribution. In this case, it can be written as follows: 

𝑿𝑿 = 𝝁𝝁 + 𝚺𝚺
1
2𝛿𝛿|𝑇𝑇0| + 𝚺𝚺

1
2(𝐼𝐼𝑛𝑛 − 𝜹𝜹𝜹𝜹𝑇𝑇)

1
2𝑇𝑇1                                         (5) 

Here, 𝜹𝜹 = 𝝀𝝀/√1 + 𝝀𝝀𝑇𝑇𝝀𝝀 , where 𝝀𝝀 is the skewness parameter. Additionally, 𝑇𝑇0  and 𝑇𝑇1  are 
independent of each other, and follow 𝑁𝑁(0,1) and multivariate normal distribution 𝑁𝑁𝑛𝑛(0, 𝐼𝐼𝑛𝑛), 
respectively. Thus, (5) can be rewritten as a hierarchical representation with a two-level 
structure: 

𝑿𝑿|𝜏𝜏~𝑁𝑁�𝝁𝝁 + 𝚺𝚺
1
2𝜹𝜹𝜏𝜏,𝚺𝚺

1
2(𝐼𝐼𝑛𝑛 − 𝜹𝜹𝜹𝜹𝑇𝑇)𝚺𝚺

1
2� 

𝜏𝜏~𝐻𝐻𝑁𝑁1(0,1)                                                                            (6) 
Let 𝜞𝜞 = 𝚺𝚺

1
2(𝐼𝐼𝑛𝑛 − 𝜹𝜹𝜹𝜹𝑇𝑇)𝚺𝚺

1
2, then the pdf of 𝑿𝑿 can be expressed as: 

𝜙𝜙�𝑥𝑥𝑖𝑖�𝜃𝜃𝑖𝑖� = 1

�(2𝜋𝜋)
𝐷𝐷
2 |𝜞𝜞|

𝑒𝑒𝑥𝑥𝑒𝑒 �− 1
2

(𝑥𝑥𝑖𝑖 − 𝝁𝝁 − 𝚺𝚺
1
2𝜹𝜹𝜏𝜏)𝑇𝑇𝜞𝜞−1(𝑥𝑥𝑖𝑖 − 𝝁𝝁 − 𝚺𝚺

1
2𝜹𝜹𝜏𝜏)�   (7) 

The skew-normal distribution degenerates to the normal distribution when 𝝀𝝀 = 0. On the other 
hand, when 𝝀𝝀 > 0, the skew-normal distribution can capture right-skewed distributions, while 
when 𝝀𝝀 < 0, it can capture left-skewed distributions. Hence, the skew-normal distribution 
offers more robust modeling capabilities. 

2.4 U-Net network 
Convolutional deep learning methods are widely utilized in various image-related tasks such 
as image classification and segmentation due to their ability to extract features efficiently from 
the bottom to the top layers. Among these methods, the U-Net [7] network is a highly regarded 
convolutional deep learning approach that follows an encoding-decoding architecture, 
allowing for end-to-end pixel classification and yielding excellent segmentation results. 
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However, this method heavily relies on a substantial amount of sample data. In the context of 
medical image analysis, data collection requires extensive medical expertise and, due to patient 
privacy concerns, the availability of pixel-level annotated data is often limited. Consequently, 
this scarcity of calibrated data makes the model susceptible to overfitting and results in 
segmentation accuracy that falls short of meeting clinical requirements. 

2.5 Bias field estimation 
As stated in ASEG[26], the impact of intensity inhomogeneity on brain MR image 
segmentation is more substantial than that of noise. Therefore, the correction of bias field has 
a crucial role in brain image processing. The observed image with bias field can be represented 
as follows: 

𝑰𝑰 = (𝑱𝑱 + 𝒏𝒏) ⋅ 𝑩𝑩                                                      (8) 
where 𝑰𝑰  represents the observed image, 𝑱𝑱  represents the true image to be recovered, 𝒏𝒏 
represents additive noise, and 𝑩𝑩 represents the bias field. Several researchers have suggested 
that the bias field of MR images is smooth and changes gradually[26][29]. Based on this 
assumption, the bias field can be modeled using orthogonal polynomial functions: 

𝐵𝐵(𝑥𝑥) = ∑ 𝑞𝑞𝑙𝑙𝑠𝑠𝑙𝑙(𝑥𝑥)𝐿𝐿
𝑙𝑙=1                                                    (9) 

Here, {𝑠𝑠𝑙𝑙} represents the orthogonal polynomial basis functions, {𝑞𝑞𝑙𝑙}  represents the 
coefficients, and 𝐿𝐿 represents the number of basis functions. 

3. The proposed model 

3.1 Improved FCM based on skew-normal distribution 
The existing approaches using the Euclidean distance or distance function based on 

normal distribution fail to effectively characterize distributions that are asymmetric in nature. 
To overcome this drawback, we construct a distance function based on the skewed normal 
distribution. The skew-normal distribution based objective function is defined as: 

𝐸𝐸 = ∑ ∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝐾𝐾
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1                                                 (10) 

If 𝑿𝑿 ∈ 𝑹𝑹𝑫𝑫 follows 𝑆𝑆𝑁𝑁(𝝁𝝁,𝜮𝜮,𝝀𝝀) and belongs to the 𝑗𝑗th class, the log-likelihood function of the 
skew-normal distribution is represented as: 
𝐿𝐿(𝜽𝜽𝑖𝑖|𝑋𝑋) = 𝑙𝑙𝑜𝑜𝑜𝑜 𝑒𝑒 (𝑋𝑋, 𝜏𝜏;𝜽𝜽𝑖𝑖) = 𝑙𝑙𝑜𝑜𝑜𝑜( 𝑒𝑒(𝑋𝑋|𝜏𝜏;𝜽𝜽𝑖𝑖)𝑒𝑒(𝜏𝜏;𝜽𝜽𝑖𝑖))

= 𝑙𝑙𝑜𝑜𝑜𝑜 ��𝜞𝜞𝑖𝑖�
−12

(2𝜋𝜋)
𝐷𝐷
2
𝑒𝑒𝑥𝑥𝑒𝑒[ − 1

2
�𝑥𝑥𝑖𝑖 − 𝝁𝝁𝑖𝑖 − 𝜟𝜟𝑖𝑖𝜏𝜏𝑖𝑖)𝑇𝑇𝜞𝜞𝑖𝑖−1�𝑥𝑥𝑖𝑖 − 𝝁𝝁𝑖𝑖 − 𝜟𝜟𝑖𝑖𝜏𝜏𝑖𝑖�� × 2

(2𝜋𝜋)
𝐷𝐷
2
𝑒𝑒𝑥𝑥𝑒𝑒( − 1

2
𝜏𝜏𝑖𝑖2)�

= −1
2
𝑙𝑙𝑜𝑜𝑜𝑜�𝜞𝜞𝑖𝑖� −

1
2

(𝑥𝑥𝑖𝑖 − 𝝁𝝁𝑖𝑖 − 𝜟𝜟𝑖𝑖𝜏𝜏𝑖𝑖)𝑇𝑇𝛤𝛤𝑖𝑖−1(𝑥𝑥𝑖𝑖 − 𝝁𝝁𝑖𝑖 − 𝜟𝜟𝑖𝑖𝜏𝜏𝑖𝑖) −
1
2
𝜏𝜏𝑖𝑖2 − 𝐷𝐷 𝑙𝑙𝑜𝑜𝑜𝑜( 2𝜋𝜋) + 𝑙𝑙𝑜𝑜𝑜𝑜 2

 (11) 

where 𝜟𝜟𝒋𝒋 = ∑𝑖𝑖
1/2𝜹𝜹𝑖𝑖  and 𝜞𝜞𝑖𝑖 = ∑𝑖𝑖 − 𝜟𝜟𝑖𝑖𝜟𝜟𝑖𝑖𝑇𝑇 . By letting �̂�𝑡1,𝑖𝑖 = 𝐸𝐸[𝜏𝜏𝑖𝑖|𝑥𝑥𝑖𝑖,𝜽𝜽𝑖𝑖 = 𝜽𝜽�𝑖𝑖]  and �̂�𝑡2,𝑖𝑖 =

𝐸𝐸[𝜏𝜏𝑖𝑖2|𝑥𝑥𝑖𝑖,𝜽𝜽𝑖𝑖 = 𝜽𝜽�𝑖𝑖], the moments of the truncated normal distribution is: 

�̂�𝑡1,𝑖𝑖 = �̂�𝜇𝜏𝜏𝑖𝑖 + 𝑊𝑊𝛷𝛷1 �
𝜇𝜇�𝜏𝜏𝑖𝑖
𝐹𝐹�𝜏𝜏𝑖𝑖
�𝑀𝑀�𝜏𝜏𝑖𝑖  

�̂�𝑡2,𝑖𝑖 = �̂�𝜇𝜏𝜏𝑖𝑖
2 + 𝑀𝑀�𝜏𝜏𝑖𝑖

2 + 𝑊𝑊𝛷𝛷1 �
𝜇𝜇�𝜏𝜏𝑖𝑖
𝐹𝐹�𝜏𝜏𝑖𝑖
�𝑀𝑀�𝜏𝜏𝑖𝑖�̂�𝜇𝜏𝜏𝑖𝑖                               (12) 

Where 𝑊𝑊𝛷𝛷1(𝑢𝑢) = 𝜙𝜙1(𝑢𝑢)
𝛷𝛷1(𝑢𝑢)

, 𝑀𝑀�𝜏𝜏𝑖𝑖
2 = 1

1+𝜟𝜟�𝑖𝑖
𝑇𝑇𝜞𝜞�𝑖𝑖

−1𝜟𝜟�𝑖𝑖
, �̂�𝜇𝜏𝜏𝑖𝑖 =

𝜟𝜟�𝑖𝑖
𝑇𝑇𝜞𝜞�𝑖𝑖

−1(𝑒𝑒𝑖𝑖−𝝁𝝁𝑖𝑖)
1+𝜟𝜟�𝑖𝑖

𝑇𝑇𝜞𝜞�𝑖𝑖
−1𝜟𝜟�𝑖𝑖

. 𝜙𝜙1(𝑢𝑢) and 𝛷𝛷1(𝑢𝑢) are the pdf 

and cdf of the Standard normal distribution. Taking the expectation of  (11) with respect to 𝜏𝜏 
conditional on 𝑋𝑋, it can be expressed as follows: 
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𝑄𝑄� 𝜣𝜣� 𝜣𝜣�� = 𝐸𝐸[𝐿𝐿( 𝜣𝜣|𝑋𝑋)|𝑋𝑋, � 𝜣𝜣�� = −1

2
log �𝜞𝜞𝑖𝑖� −

1
2

(𝑥𝑥𝑖𝑖 − 𝝁𝝁𝑖𝑖 − 𝜟𝜟𝑖𝑖�̂�𝑡1,𝑖𝑖)𝑇𝑇𝜞𝜞𝑖𝑖−1�𝑥𝑥𝑖𝑖 − 𝝁𝝁𝑖𝑖 − 𝜟𝜟𝑖𝑖�̂�𝑡1,𝑖𝑖�  

−1
2
��̂�𝑡2,𝑖𝑖 − �̂�𝑡1,𝑖𝑖

2 �𝜟𝜟𝑖𝑖𝑇𝑇𝜞𝜞𝑖𝑖−1𝜟𝜟𝑖𝑖 −
1
2
�̂�𝑡2,𝑖𝑖 − 𝐷𝐷𝑙𝑙𝑜𝑜𝑜𝑜(2𝜋𝜋) + 𝑙𝑙𝑜𝑜𝑜𝑜2       (13) 

 
Then, we can define the distance function as: 

𝑑𝑑𝑖𝑖𝑖𝑖 =
1
2
𝑙𝑙𝑜𝑜𝑜𝑜�𝜞𝜞𝑖𝑖� +

1
2 �
𝑥𝑥𝑖𝑖 − 𝐵𝐵𝑖𝑖𝝁𝝁𝑖𝑖 − 𝜟𝜟𝑖𝑖�̂�𝑡1,𝑖𝑖�

𝑇𝑇𝜞𝜞𝑖𝑖−1�𝑥𝑥𝑖𝑖 − 𝐵𝐵𝑖𝑖𝝁𝝁𝑖𝑖 − 𝜟𝜟𝑖𝑖�̂�𝑡1,𝑖𝑖� 

+(�̂�𝑡2,𝑖𝑖 − �̂�𝑡1,𝑖𝑖
2 )𝜟𝜟𝑖𝑖𝑇𝑇𝜞𝜞𝑖𝑖−1𝜟𝜟𝑖𝑖 + 1

2
�̂�𝑡2,𝑖𝑖                                                (14)                                                                                                 

Here, 𝐵𝐵𝑖𝑖 is the bias field defined by using (9). Due to the use of skewed normal distribution, 
this distance function can effectively characterize asymmetric distribution information, and 
the distance function based on Gaussian distribution is a special case of our model, making it 
more robust. 

3.2 Regularization term based on the KL divergence and the results of U-Net 
The improved FCM based on skew-normal distribution has not considered any spatial. To 

reduce the impact of noise, the LMKLFCM[22] defines a regularization term as prior 
knowledge to enhance segmentation accuracy. However, the prior information is isotropic, 
which results in the generation of pseudo-contours and the loss of important details, 
particularly in the presence of noise. 

Fig. 2 illustrates the segmentation results on a simulated brain MR image with a noise level 
of 7%. Fig. 2(a) depicts the initial image, while Fig. 2(b) provides a detailed view of Fig. 2(a). 
Fig. 2(c-d) display the ground truth and the segmentation result obtained by applying 
LMKLFCM. In Fig. 2(f-g), the focus is on the segmentation results of pixels within the red 
rectangular area shown in Fig. 2(c-d). It is apparent that LMKLFCM leads to erroneous 
classification for more than half of the pixels in the rectangle. This limitation suggests that the 
current formulation of the KL divergence term in LMKLFCM may not effectively handle the 
noise present in the image. Further research and modifications are necessary to ensure that 
important details and edge information are preserved during the segmentation process, even 
in the presence of noise. 

 
Fig. 2. The segmentation results on simulated brain MR image. (a) is the initial image. (b)-(e) are the 
details of the noise image, the ground truth, the segmentation results obtained by LMKLFCM and our 
method. (f)-(h) are gray values of the ground truth, the segmentation results obtained by LMKLFCM 

and our method in the red rectangle. 
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To tackle this issue, we leverage the segmentation results generated by U-Net as prior 
information, even with limited amounts of labeled training data. Subsequently, we define the 
regularization term as follows: 

𝐸𝐸𝐾𝐾𝐿𝐿 = ∑ ∑ 𝑢𝑢𝑖𝑖𝑖𝑖 𝑙𝑙𝑜𝑜𝑜𝑜
𝑢𝑢𝑖𝑖𝑖𝑖
𝜋𝜋𝑖𝑖𝑖𝑖

𝐾𝐾
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1                                                            (15) 

where 𝜋𝜋𝑖𝑖𝑖𝑖 is the probability of each pixel obtained by using U-Net. 
It is important to mention that when using U-Net to train on small samples, the obtained 

results may not have a high level of confidence. To address this issue, we introduce a weight 
function that takes into consideration the high confidence results as prior information. This 
allows us to enhance the regularization term. The improved regularization term can be 
described as follows: 
 𝐸𝐸𝐾𝐾𝐿𝐿 = ∑ ∑ 𝐻𝐻�𝜋𝜋𝑖𝑖𝑖𝑖�𝑢𝑢𝑖𝑖𝑖𝑖 𝑙𝑙𝑜𝑜𝑜𝑜

𝑢𝑢𝑖𝑖𝑖𝑖
𝜋𝜋𝑖𝑖𝑖𝑖

𝐾𝐾
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1   (16) 

Here, 𝐻𝐻(⋅)is a confidence function that evaluates the reliability of the outcomes generated by 
the U-Net model. A higher value of 𝐻𝐻 indicates greater credibility in the U-Net results, while 
a lower value signifies lower credibility. This confidence function helps address overfitting 
issues when dealing with limited sample sizes. 𝐻𝐻(⋅)is defined as follows: 
 𝐻𝐻(𝑥𝑥) = 1

1+𝑒𝑒𝑒𝑒𝑒𝑒(−𝛾𝛾(𝑒𝑒−𝜍𝜍))
 (17) 

The parameter 𝜍𝜍 represents a translation parameter that is based on the credibility of the U-Net 
results. When there is a sufficient number of U-Net training sets, we can confidently consider 
the results to be reliable. In such cases, it is advisable to set the value range of 𝜍𝜍 to be between 
0.6 and 0.7. This range ensures that the model strikes a balance between generalization and 
specificity. 

However, when the number of U-Net training sets is limited, there is a higher risk of 
overfitting. In such situations, the reliability of the U-Net model decreases. To mitigate the 
risk of overfitting, it is recommended to set the value range of 𝜍𝜍 to be between 0.8 and 0.95. 
This wider range encourages the model to generalize better and reduces the likelihood of 
overfitting. 

In summary, the choice of the value range for parameter 𝜍𝜍 depends on the number of 
available training sets. Larger training sets allow for a range with smaller values, indicating 
higher reliability. On the other hand, smaller training sets necessitate a range with larger values, 
acknowledging the vulnerability to overfitting and lower reliability. 

Parameter 𝛾𝛾 is a scaling factor that controls the steepness of the 𝐻𝐻 function, which in turn 
affects the useful range of confidence of the U-Net model. By adjusting the value of 𝛾𝛾, we can 
modify the steepness of the function and consequently control the range of confidence in the 
U-Net results. For this paper, only 10% of the available training data is used. Therefore, the 
value of 𝜍𝜍 is set to 0.9 and the value of 𝛾𝛾 is set to 10 to accommodate the limited training data. 

The U-Net can accurately extract feature information from available images, surpassing 
the capabilities of traditional methods. As a result, integrating the results of U-Net as prior 
information allows for the appropriate assignment of membership to corresponding pixels, 
preventing the occurrence of abnormal memberships and preserving intricate details for more 
precise segmentation. Fig. 2(e) and (h) showcase the segmentation results obtained by utilizing 
prior information acquired from U-Net. It is evident from the figures that the results are 
superior to those obtained using LMKLFCM. 
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3.3 The energy function 
By leveraging the power of deep learning, traditional algorithms can be enhanced to 

achieve remarkable improvements in accuracy. Moreover, integrating the deep learning 
methods with traditional algorithms enables the fusion of common and unique features, 
addressing the performance degradation issue that arises from deep learning method's limited 
ability to extract common features in scenarios with small training samples. The total energy 
function of our method is defined as: 
 𝐸𝐸 = ∑ ∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝐾𝐾

𝑖𝑖=1
𝑁𝑁
𝑖𝑖=1 + 𝛽𝛽 ∑ ∑ 𝐻𝐻�𝜋𝜋𝑖𝑖𝑖𝑖�𝑢𝑢𝑖𝑖𝑖𝑖 𝑙𝑙𝑜𝑜𝑜𝑜

𝑢𝑢𝑖𝑖𝑖𝑖
𝜋𝜋𝑖𝑖𝑖𝑖

𝐾𝐾
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1  (18) 

where 𝛽𝛽 is a non-negative constant used to balance the energy term and regularization term. 
Combining (14) and (18), the energy function has the following form: 

 

𝐸𝐸 = ∑ ∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝐾𝐾
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 + 𝛽𝛽 ∑ ∑ 𝐻𝐻�𝜋𝜋𝑖𝑖𝑖𝑖�𝑢𝑢𝑖𝑖𝑖𝑖 𝑙𝑙𝑜𝑜𝑜𝑜

𝑢𝑢𝑖𝑖𝑖𝑖
𝜋𝜋𝑖𝑖𝑖𝑖

𝐾𝐾
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1

    = ∑ ∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝐾𝐾
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 {1

2
𝑙𝑙𝑜𝑜𝑜𝑜�𝜞𝜞𝑖𝑖� + 1

2
(𝑥𝑥𝑖𝑖 − 𝐵𝐵𝑖𝑖𝝁𝝁𝑖𝑖 − 𝜟𝜟𝑖𝑖�̂�𝑡1,𝑖𝑖)𝑇𝑇𝜞𝜞𝑖𝑖−1(𝑥𝑥𝑖𝑖 − 𝐵𝐵𝑖𝑖𝝁𝝁𝑖𝑖 − 𝜟𝜟𝑖𝑖�̂�𝑡1,𝑖𝑖)

        + 1
2

[�̂�𝑡2,𝑖𝑖 − �̂�𝑡1,𝑖𝑖
2 ]𝜟𝜟𝑖𝑖𝑇𝑇𝜞𝜞𝑖𝑖−1𝜟𝜟𝑖𝑖 + 1

2
�̂�𝑡2,𝑖𝑖} + 𝛽𝛽∑ ∑ 𝑢𝑢𝑖𝑖𝑖𝑖

1+𝑒𝑒𝑒𝑒𝑒𝑒(−𝛾𝛾(𝜋𝜋𝑖𝑖𝑖𝑖−𝜍𝜍))
𝑙𝑙𝑜𝑜𝑜𝑜 𝑢𝑢𝑖𝑖𝑖𝑖

𝜋𝜋𝑖𝑖𝑖𝑖
𝐾𝐾
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1

 (19) 

 

3.4 Parameter Learning 
By using the Lagrange multiplier method, (18) can be written as: 
 𝐸𝐸 = ∑ ∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝐾𝐾

𝑖𝑖=1
𝑁𝑁
𝑖𝑖=1 + 𝛽𝛽 ∑ ∑ 𝐻𝐻�𝜋𝜋𝑖𝑖𝑖𝑖�𝑢𝑢𝑖𝑖𝑖𝑖 𝑙𝑙𝑜𝑜𝑜𝑜

𝑢𝑢𝑖𝑖𝑖𝑖
𝜋𝜋𝑖𝑖𝑖𝑖

𝐾𝐾
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 + 𝛼𝛼(∑ 𝑢𝑢𝑖𝑖𝑖𝑖 − 1)𝐾𝐾

𝑖𝑖=1  (20) 

where 𝛼𝛼 is the Lagrange multiplier. Set the partial of 𝐸𝐸 with respect to 𝑢𝑢𝑖𝑖𝑖𝑖 to zero, we have: 

 � 𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢𝑖𝑖𝑖𝑖

= 𝑑𝑑𝑖𝑖𝑖𝑖 + 𝛽𝛽𝐻𝐻�𝜋𝜋𝑖𝑖𝑖𝑖��𝑙𝑙𝑜𝑜𝑜𝑜 𝑢𝑢𝑖𝑖𝑖𝑖 − 𝑙𝑙𝑜𝑜𝑜𝑜 𝜋𝜋𝑖𝑖𝑖𝑖 + 1� + 𝛼𝛼��
𝑢𝑢𝑖𝑖𝑖𝑖=𝑢𝑢�𝑖𝑖𝑖𝑖

= 0 (21) 

Then, we can obtain: 
 𝑢𝑢�𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑑𝑑𝑖𝑖𝑖𝑖/𝛽𝛽𝛽𝛽(𝜋𝜋𝑖𝑖𝑖𝑖))

∑ 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑑𝑑𝑖𝑖𝑖𝑖/𝛽𝛽𝛽𝛽(𝜋𝜋𝑖𝑖𝑖𝑖))𝐾𝐾
𝑖𝑖=1

 (22) 

Let𝐵𝐵𝑖𝑖 = 𝑄𝑄𝑇𝑇𝑆𝑆𝑖𝑖, where 𝑄𝑄 = [𝑞𝑞1,𝑞𝑞2, … , 𝑞𝑞𝐿𝐿]𝑇𝑇 is the coefficients of the basis functions. Here, we 
use the Leyland polynomials as the basis functions. Fixed 𝑢𝑢,𝝁𝝁,𝜞𝜞,𝜟𝜟and 𝝀𝝀, set the partial of 𝐸𝐸 
with regard to 𝑄𝑄 to zero, we obtain: 

 
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝜕𝜕∑ ∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝐾𝐾

𝑖𝑖=1
𝑁𝑁
𝑖𝑖=1

𝜕𝜕𝜕𝜕
��
𝜕𝜕=𝜕𝜕�

= 0

⇒ ∑ 𝑆𝑆𝑖𝑖𝑆𝑆𝑖𝑖𝑇𝑇𝑁𝑁
𝑖𝑖=1 ∑ 𝑢𝑢𝑖𝑖𝑖𝑖 ⋅ 𝝁𝝁𝑖𝑖𝑇𝑇𝜞𝜞𝑖𝑖−1𝝁𝝁𝑖𝑖𝑄𝑄�𝐾𝐾

𝑖𝑖=1 = ∑ 𝑆𝑆𝑖𝑖𝑁𝑁
𝑖𝑖=1 ∑ 𝑢𝑢𝑖𝑖𝑖𝑖[(𝑥𝑥𝑖𝑖 − 𝜟𝜟𝑖𝑖�̂�𝑡1,𝑖𝑖)𝑇𝑇𝜞𝜞𝑖𝑖−1𝝁𝝁𝑖𝑖𝐾𝐾

𝑖𝑖=1

⇒ 𝑄𝑄� = 𝐴𝐴−1𝑊𝑊

 (23) 

Where 𝐴𝐴 = ∑ 𝑆𝑆𝑖𝑖𝑆𝑆𝑖𝑖𝑇𝑇𝑁𝑁
𝑖𝑖=1 ∑ 𝑢𝑢𝑖𝑖𝑖𝑖 ⋅ 𝝁𝝁𝑖𝑖𝑇𝑇𝜞𝜞𝑖𝑖−1𝝁𝝁𝑖𝑖𝐾𝐾

𝑖𝑖=1 ,𝑊𝑊 = ∑ 𝑆𝑆𝑖𝑖𝑁𝑁
𝑖𝑖=1 ∑ 𝑢𝑢𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖 − 𝜟𝜟𝑖𝑖�̂�𝑡1,𝑖𝑖)𝑇𝑇𝜞𝜞𝑖𝑖−1𝝁𝝁𝑖𝑖𝐾𝐾

𝑖𝑖=1 . 
Fixed 𝑢𝑢,𝑄𝑄,𝜞𝜞,𝜟𝜟and 𝝀𝝀, calculate 𝝁𝝁𝑖𝑖 in the same way, we can obtain: 

 
� 𝜕𝜕𝜕𝜕
𝜕𝜕𝝁𝝁𝑖𝑖

=
𝜕𝜕∑ ∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝐾𝐾

𝑖𝑖=1
𝑁𝑁
𝑖𝑖=1

𝜕𝜕𝝁𝝁𝑖𝑖
��
𝝁𝝁𝑖𝑖=𝝁𝝁�𝑖𝑖

= 0

⇒ ∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝜞𝜞𝑖𝑖−1�𝑥𝑥𝑖𝑖 − 𝐵𝐵𝑖𝑖𝝁𝝁�𝑖𝑖 − 𝜟𝜟𝑖𝑖�̂�𝑡1,𝑖𝑖�𝐵𝐵𝑖𝑖𝑁𝑁
𝑖𝑖=1 = 0 ⇒ 𝝁𝝁�𝑖𝑖 =

∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝐵𝐵𝑖𝑖�𝑒𝑒𝑖𝑖−𝜟𝜟𝑖𝑖�̂�𝑡1,𝑖𝑖�𝑁𝑁
𝑖𝑖=1

∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝐵𝐵𝑖𝑖
2𝑁𝑁

𝑖𝑖=1

 (24) 

 
Using the same method, we can obtain: 



2092                       Guiyuan Zhu et al.: An improved fuzzy c-means method based on multivariate skew-normal distribution  
for brain MR image segmentation 

 

� 𝜕𝜕𝜕𝜕
𝜕𝜕𝜞𝜞𝑖𝑖

−1 =
𝜕𝜕∑ ∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝐾𝐾

𝑖𝑖=1
𝑁𝑁
𝑖𝑖=1

𝜕𝜕𝜞𝜞𝑖𝑖
−1 ��

𝜞𝜞𝑖𝑖
−1=𝜞𝜞�𝑖𝑖

−1
= 0

⇒ ∑ 𝑢𝑢𝑖𝑖𝑖𝑖�(𝑥𝑥𝑖𝑖 − 𝐵𝐵𝑖𝑖𝝁𝝁�𝑖𝑖 − 𝜟𝜟𝑖𝑖�̂�𝑡1,𝑖𝑖)(𝑥𝑥𝑖𝑖 − 𝐵𝐵𝑖𝑖𝝁𝝁�𝑖𝑖 − 𝜟𝜟𝑖𝑖�̂�𝑡1,𝑖𝑖)𝑇𝑇 + (�̂�𝑡2,𝑖𝑖 − �̂�𝑡1,𝑖𝑖
2 )𝜟𝜟𝑖𝑖𝑇𝑇𝜟𝜟𝑖𝑖�𝑁𝑁

𝑖𝑖=1

     = ∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝜞𝜞�𝑖𝑖−1𝑁𝑁
𝑖𝑖=1

⇒ 𝜞𝜞�𝑖𝑖−1 =
∑ 𝑢𝑢𝑖𝑖𝑖𝑖�(𝑒𝑒𝑖𝑖−𝐵𝐵𝑖𝑖𝝁𝝁�𝑖𝑖−𝜟𝜟𝑖𝑖�̂�𝑡1,𝑖𝑖)𝑇𝑇(𝑒𝑒𝑖𝑖−𝐵𝐵𝑖𝑖𝝁𝝁�𝑖𝑖−𝜟𝜟𝑖𝑖�̂�𝑡1,𝑖𝑖)+(�̂�𝑡2,𝑖𝑖−�̂�𝑡1,𝑖𝑖

2 )𝜟𝜟𝑖𝑖
𝑇𝑇𝜟𝜟𝑖𝑖�𝑁𝑁

𝑖𝑖=1

∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝑁𝑁
𝑖𝑖=1

 (25) 

 

� 𝜕𝜕𝜕𝜕
𝜕𝜕𝜟𝜟𝑖𝑖

=
𝜕𝜕∑ ∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝐾𝐾

𝑖𝑖=1
𝑁𝑁
𝑖𝑖=1

𝜕𝜕𝛥𝛥𝑖𝑖
��
𝜟𝜟𝑖𝑖=𝜟𝜟�𝑖𝑖

= 0

⇒ ∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝜞𝜞𝑖𝑖−1�(𝑥𝑥𝑖𝑖 − 𝐵𝐵𝑖𝑖𝝁𝝁�𝑖𝑖 − 𝜟𝜟�𝑖𝑖�̂�𝑡1,𝑖𝑖)�̂�𝑡1,𝑖𝑖 + (�̂�𝑡2,𝑖𝑖 − �̂�𝑡1,𝑖𝑖
2 )𝜟𝜟�𝑖𝑖�𝑁𝑁

𝑖𝑖=1 = 0

⇒ 𝜟𝜟�𝑖𝑖 =
∑ 𝑢𝑢𝑖𝑖𝑖𝑖�̂�𝑡1,𝑖𝑖(𝑒𝑒𝑖𝑖−𝐵𝐵𝑖𝑖𝝁𝝁�𝑖𝑖)𝑁𝑁
𝑖𝑖=1

∑ 𝑢𝑢𝑖𝑖𝑖𝑖�̂�𝑡2,𝑖𝑖
𝑁𝑁
𝑖𝑖=1

 (26) 

 𝜮𝜮�𝑖𝑖 = 𝜞𝜞�𝑖𝑖 + 𝜟𝜟�𝑖𝑖𝑇𝑇𝜟𝜟�𝑖𝑖 (27) 

 𝝀𝝀�𝑖𝑖 =
𝜮𝜮�𝑖𝑖
−12𝜟𝜟�𝑖𝑖

(1−𝜟𝜟�𝑖𝑖
𝑇𝑇𝜞𝜞�𝑖𝑖

−1𝜟𝜟�𝑖𝑖)
1
2
 (28) 

The proposed algorithm can be summarized as follows: 
Step 1: Initialize the parameters 𝑢𝑢𝑖𝑖𝑖𝑖  and 𝜣𝜣 = (𝝁𝝁𝑖𝑖 ,𝜮𝜮𝑖𝑖,𝝀𝝀𝑖𝑖,𝜞𝜞𝑖𝑖,𝜹𝜹𝑖𝑖) using the results obtained 
from U-Net.  
Step 2: Calculate �̂�𝑡1,𝑖𝑖, �̂�𝑡2,𝑖𝑖 by using (12). 
Step 3: Update 𝑄𝑄,𝑢𝑢𝑖𝑖𝑖𝑖 ,𝝁𝝁𝑖𝑖 ,𝜞𝜞𝑖𝑖,𝜟𝜟𝑖𝑖by using (23)(22)(24)(25)(26), respectively. 
Step 4: Update 𝜮𝜮𝑖𝑖,𝝀𝝀𝑖𝑖 by using (27)(28), respectively.  
Step 5: Check if the convergence criterion is met for either the objective function or the 
parameter values. If the criterion is satisfied, stop the iteration; otherwise, go back to Step 2. 

4. Experiment Results 
We evaluate the performance of our proposed algorithm through experiments and 

compare it with several existing algorithms, including FLICM[21], RSCFCM[13], 
LMKLFCM[22], AMTHFCM[17], SCAAFMM[19], MICO[29] and U-Net[7]. We conduct 
the experiments on a collection of simulated and clinical 3T brain MR images. For our 
experiments, we use the following settings for the parameters unless stated otherwise. We 
initialize the initial parameters using the results of U-Net. The degree of the basis function is 
set as 4, resulting in a total of 15 basis functions (L=15). Additionally, we set the values of ς , 
γ , and β  to 0.9, 10, and 50 respectively. In the U-Net part of our algorithm, the amount of 
training data and testing data is 10% and 90% of the corresponding datasets, respectively. The 
loss function used is cross entropy loss. The batch size is set to 10, the learning rate is 0.0001, 
and the epochs is 100. The parameters of the other algorithms used in the comparison are set 
to the values specified in their respective papers. 

In our experiments, we utilized brain MR images from two different sources: simulated 
images from BrainWeb1 and real images from the Internet Brain Segmentation Repository 
(IBSR2) and MRBrainS133. BrainWeb provides complete 3-dimensional simulated brain data 

 
1 http://brainweb.bic.mni.mcgill.ca/ 
2 https://www.nitrc.org/projects/ibsr 
3 https://mrbrains13.isi.uu.nl/ 
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sets. For our specific experiments, we selected T1-weighted images with a slice thickness of 
1mm. These simulated images allow us to assess the performance of our proposed method in 
a controlled environment with known ground truth. On the other hand, IBSR offers a collection 
of 18 subjects along with their corresponding segmentation results. These real images provide 
a more diverse and realistic dataset for evaluating the effectiveness of our method in real-
world scenarios. Additionally, MRBrainS13 provides fifteen data sets accompanied by manual 
segmentation results. This dataset allows us to further validate the performance of our 
proposed method against manual annotations by experts. The size of each image volume in 
BrainWeb, IBSR, MRBrainS13 are 181 217 181× × , 256 128 256× × , 240 240 48× × , 
respectively. By using a combination of simulated and real brain MR images, our aim is to 
thoroughly evaluate the performance of our proposed method in various scenarios. This 
approach allows us to validate its effectiveness and potential for practical applications in real-
world settings.  

To assess the accuracy of the segmentation results, we utilize the Jaccard similarity 
coefficient, denoted as Js. The Jaccard similarity coefficient quantifies the similarity between 
the predicted segmentation and the ground truth segmentation. It is defined as: 

 1 2
1 2

1 2

| |( , )
| |
S SJs S S
S S
∩

=
∪

 (1) 

where 1S  and 2S  denote the segmentation result and the ground truth respectively. In practice, 
the pixels of the segmentation result are first matched one-to-one with the pixels of ground truth, 
the wrong ones are 0, and the right ones are 1, so as to obtain two 01 matrices. Then we add the 
two 01 matrices to get a new matrix, the number of elements greater than 1 divided by the total 
number of elements is Js. The Js value ranges from 0 to 1, where a value of 1 indicates a perfect 
match between the predicted segmentation and the ground truth, while a value of 0 indicates 
no overlap between the two segmentations. Higher values of Js indicate improved 
segmentation accuracy. 

4.1 Performance of robustness to noise on simulated brain MRI data 
To show the effect of the noise, we compared it with six other algorithms on simulated 

brain datasets with noise levels of 3%, 5%, and 7% (referred to as N3F0, N5F0, and N7F0, 
respectively). Fig. 3 presents the segmentation results of the 150th simulated brain MR image 
with noise levels of 3% (first row), 5% (third row), and 7% (fifth row). The first column shows 
the initial images used for segmentation, while the second column displays the corresponding 
ground truths. From the third to the last column, the segmentation results of FLICM, RSCFCM, 
LMKLFCM, AMTHFCM, SCAAFMM, U-Net, and our proposed method are displayed. 
Additionally, the even rows show local zoomed-in images for a clearer view. 

From Fig. 3, it can be observed that the FLICM method is highly affected by noise due to 
its reliance on spatial Euclidean distance as the local spatial information. This approach 
ignores the influence of pixel intensity, leading to poor performance in noisy environments. 
The RSCFCM method utilizes isotropic spatial information, which makes it challenging to 
preserve fine details on weak edges. The LMKLFCM method also performs poorly in regions 
with slim structures since it tends to lose details when using the mean membership information. 
In comparison, the AMTHFCM and SCAAFMM methods are more robust to noise than the 
RSCFCM method as they incorporate anisotropic spatial information. However, even these 
methods suffer from some loss of details. In contrast, the U-Net model, which incorporates 
skip connections, is able to recover lost details caused by down sampling, including boundary 
information. Additionally, the U-Net model demonstrates robustness to noise, making it a 
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favorable choice in noisy environments. With the increasing noise level, the segmentation 
results of FLICM, RSCFCM, AMTHFCM, and MICO are not satisfactory. The SCAAFMM 
method produces overly smooth boundaries, making it difficult to preserve details. In contrast, 
our proposed method combines U-Net with the FCM model and utilizes the skew-normal 
distribution as the dissimilarity function, which helps preserve more details. 

 To assess the accuracy of the segmentation results, we employ Js values as a performance 
metric. Table 1 displays the average Js values acquired from 200 MR images, reflecting the 
accuracy across various noise levels. It is evident that our method consistently achieves the 
highest Js values for each noise level, exhibiting relatively low standard deviations. This 
highlights the robustness and stability of our approach compared to other methods. 

4.2 Performance of robustness to bias field on simulated brain MRI data 
To evaluate the effectiveness of our method in handling bias field, we conducted a comparative 
analysis with various intensity inhomogeneity levels. Since FLICM, LMKLFCM, and 
SCAAFMM do not account for bias field interference, we compared our proposed method 
with RSCFCM, AMTHFCM, MICO, and U-Net. Fig. 4 showcases the segmentation results of 
the five methods under different intensity inhomogeneity conditions. The first, third, and fifth 
rows present the segmentation results of the image with the level of noise of 3% and the level 
of intensity inhomogeneity of 40% (N3F40), 80% (N3F80), and 100% (N3F100), respectively. 
It is evident that all five methods mitigate the impact of intensity inhomogeneity to some extent. 
However, RSCFCM and AMTHFCM sacrifice details in thin structures, while MICO is 
susceptible to noise interference due to its disregard for spatial information. 

 
Fig. 3. The segmentation results on simulated brain MR images with different noise levels. Each 

column, from the first to the last, represents the corresponding initial images, ground truths, and the 
segmentation results produced by FLICM, RSCFCM, LMKLFCM, AMTHFCM, SCAAFMM, U-Net, 

and our method, respectively. The even rows show local zoomed-in images for a clearer view. 
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Table 1. The average JS values of segmentation results for simulated brain MR images with different 
noise levels. 

  FLICM RSCFCM LMKLFC
M 

AMTHFC
M 

SCAAFM
M 

U-Net Proposed 

 
 

3% 

GM 85.05 ±
2.06 

74.52±
14.68 

82.05±
3.14 

84.47±
3.12 

87.16±
1.44 

89.64±
2.84 

90.07±
2.15 

WM 85.66± 
7.38 

81.59±
9.00 

86.73±4.7
5 

88.17±
7.21 

89.69±
4.76 

89.71±
8.52 

90.08±
7.50 

CSF 88.03±
3.05 

81.44±
2.81 

76.63±
5.44 

82.46±
6.20 

85.94±
3.94 

90.33±
3.41 

90.96±
2.87 

 
 

5% 

GM 72.19±
2.12 

70.32±
14.36 

80.00±
2.98 

81.17±
4.33 

82.65±
2.04 

87.28±
3.42 

87.35±
2.38 

WM 73.69± 
10.29 

77.56±
9.02 

84.48±
6.57 

84.32±
10.13 

85.23±
7.01 

88.31±
8.51 

88.36±
7.50 

CSF 80.47± 
4.29 

78.47±
3.26 

76.19±
4.77 

82.16±
5.24 

83.10±
4.10 

88.13±
3.81 

88.38±
2.76 

 
 

7% 

GM 59.94± 
2.46 

67.77±
9.45 

74.63±
4.77 

75.52±
5.45 

78.72±
2.83 

84.91±
3.37 

84.93±
2.45 

WM 63.27± 
8.99 

75.17±
8.61 

80.52±
5.03 

79.29±
12.55 

82.11±
7.32 

86.42±
8.00 

86.44±
6.98 

CSF 69.80± 
6.18 

73.99±
5.19 

72.24±
7.86 

79.73±
5.14 

79.26±
4.78 

85.12±
3.58 

85.35±
2.56 

 
To further quantify the results, Table 2 presents the average Js values of the segmentation 

results obtained using the five methods. It is observed that our method achieves the highest 
average Js values and the lowest standard deviations. This indicates that our method effectively 
preserves intricate details and demonstrates greater robustness in comparison to the other 
methods. 
 
Table 2. The average JS values of segmentation results for simulated brain MR images with different 

intensity inhomogeneity levels. 
  RSCFCM AMTHFCM MICO U-Net Proposed 

 
N3F40 

GM 74.02±15.31 84.34±2.90 78.59±8.26 90.89±2.22 91.27±2.06 
WM 80.60±9.43 88.17±7.02 79.19±15.20 91.16±6.00 91.48±5.16 
CSF 81.37±2.97 82.07±6.48 86.48±3.28 90.91±3.09 91.50±2.34 

 
N3F80 

GM 71.52±14.92 83.68±3.31 79.21±8.55 90.86±1.45 91.25±1.15 
WM 78.19±9.86 83.68±7.38 79.67±15.51 91.70±4.32 92.17±3.64 
CSF 79.88±3.39 81.61±6.76 86.65±3.56 90.81±2.79 91.03±2.18 

 
N3F100 

GM 70.24±14.99 83.34±3.52 79.58±8.44 90.22±2.08 90.83±1.77 
WM 77.05±10.43 87.25±7.48 79.90±15.47 90.98±4.25 91.55±3.58 
CSF 79.21±3.63 81.45±6.85 86.80±3.63 90.40±2.96 91.43±2.10 
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Fig. 4. The segmentation results on simulated brain MR images with different intensity 

inhomogeneity levels. Each column, from the first to the last, represents the corresponding initial 
images, ground truths, and the segmentation results produced by RSCFCM, AMTHFCM, MICO, U-
Net and our method, respectively. The even rows show local zoomed-in images for a clearer view. 

4.3 Performance on real brain MRI data 
In this section, our proposed algorithm is evaluated by comparing it with six existing 

algorithms using real brain MR images acquired from the IBSR and MRBrainS13 datasets. 
These images possess unknown noise and bias fields, and their intensity distributions are 
asymmetric. Fig. 5 showcases the results of two brain MR images. The first image is obtained 
from the IBSR dataset, while the second image is obtained from the MRBrainS13 dataset. We 
present the initial images, ground truths, and segmentation results of FLICM, RSCFCM, 
LMKLFCM, AMTHFCM, SCAAFMM, MICO, U-Net, and our algorithm in the first to final 
columns. The grayscale histograms of the original images and the details of the preceding rows 
are displayed in the even rows. 

As shown in Fig. 5, the first brain MRI image exhibits a significant lack of contrast, with 
a skewed histogram. This leads to unsatisfactory segmentation results for several algorithms, 
including FLICM, RSCFCM, LMKLFCM, AMTHFCM, and MICO. In particular, FLICM 
and MICO misclassify a considerable number of pixels belonging to GM as WM within the 
red rectangle region, due to the interference of low contrast. Although RSCFCM, AMTHFCM, 
and SCAAFMM achieve slightly better results by incorporating spatial information, 
misclassification of pixels around the boundary is still noticeable due to the presence of weak 
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boundaries. Furthermore, LMKLFCM misclassifies CSF in slim structure regions into the GM 
cluster, where most neighboring pixels reside. In comparison to these algorithms, U-Net 
produces the best segmentation result but struggles to maintain fine details. 

To show the accuracy of segmentation results, we use the JS values on 200 real brain 
images. As shown in Table 3, our method achieves the highest average Js values, 
demonstrating its superior robustness compared to other methods. 

 
Fig. 5. Segmentation results on real brain MR images. The first image and the second image are 

sourced from IBSR and MRBrainS13, respectively. The first to last columns are the initial images, the 
ground truths, the segmentation results of FLICM, RSCFCM, LMKLFCM, AMTHFCM, 

SCAAFMM, MICO, U-Net and our method, respectively. 
 

Table 3. The average Js values of the segmentation results on real brain MR images. 

  FLICM RSCFC
M 

LMKLF
CM 

AMTHF
CM 

SCAAF
MM 

MICO U-Net Proposed 

 

 
IBS
R 

G
M 

56.87±1
2.25 

37.20±1
4.60 

60.51±1
0.89 

57.26±8.
22 

60.83±1
0.76 

56.97±9.
50 

85.30±3.
73 

85.49±3.
16 

W
M 

75.33±1
1.87 

69.94±1
3.25 

74.83±1
0.26 

69.53±1
0.44 

74.59±1
2.35 

65.65±1
4.54 

83.71±6.
63 

84.29±6.
01 

CS
F 

46.45±1
3.94 

45.25±1
2.59 

40.50±1
5.64 

39.42±1
4.40 

40.08±1
5.05 

47.07±1
4.74 

67.99±8.
90 

69.10±8.
19 

 

MR
Br 

ainS
13 

G
M 

56.87±1
2.25 

37.21±1
4.60 

56.79±9.
44 

58.70±1
4.83 

61.03±1
1.15 

51.13±1
3.43 

67.24±8.
01 

68.75±7.
26 

W
M 

65.81±1
8.69 

55.50±1
7.75 

65.94±1
7.85 

66.73±1
9.72 

68.75±1
8.74 

61.03±1
9.05 

64.65±1
7.31 

72.35±1
5.51 

CS
F 

74.33±4.
68 

72.45±4.
64 

75.67±5.
10 

75.15±5.
42 

75.45±4.
50 

72.24±5.
32 

70.99±6.
63 

79.35±4.
12 
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4.4 Discussion 
In this study, our objective was to train the U-Net model using only 10% of the labeled 

data. It is crucial to acknowledge that the size of the training set plays a significant role in 
determining the accuracy of the final model. To demonstrate the superiority of our approach, 
we conducted evaluations using various proportions of the training data. The results, presented 
in Table 4, unequivocally illustrate that our method outperforms U-Net when trained with 
10%, 20%, and 40% of the available data. As the proportion of training data increases to 80%, 
our method achieves comparable performance to U-Net. Given the limited availability of 
medical image data, our algorithm exhibits superior results in brain MR image segmentation 
compared to U-Net. 
 
Table 4. The average Js values of the segmentation results with different proportions of training data. 

  10% 20% 40% 80% 
 

U-Net 
GM 67.24±8.01 68.07±7.00 69.16±7.42 70.31±6.46 
WM 64.65±17.31 67.37±17.47 70.70±17.44 73.22±17.80 
CSF 70.99±6.63 72.13±6.61 74.79±6.73 79.13±5.35 

 
Proposed 

GM 68.75±7.96 69.11±7.74 69.45±7.39 70.32±6.36 
WM 72.35±17.51 71.81±17.52 72.56±17.44 73.26±17.20 
CSF 79.35±4.82 78.90±4.11 79.40±4.81 79.29±5.06 

 
Although our method demonstrates high accuracy in brain image segmentation, it does 

have certain limitations in the selection of parameters ς  and γ . To determine the optimal 
parameters, we conducted tests on 200 simulated brain images with a noise level of 3% and 
an intensity inhomogeneity level of 80%. Fig. 6 depicts the average misclassification ratio 
(MCR) values obtained. The results indicate that our method achieves more accurate 
segmentation when ς  and γ  are set to 0.9 and 10, respectively. 

 

 
Fig. 6. The MCR values of our proposed method with different ς  and γ  
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5. Conclusion 
In this paper, we introduce a novel fuzzy c-means (FCM) algorithm that addresses the 

challenges associated with brain MR image segmentation. The traditional FCM model has 
some limitations, such as its inability to effectively handle noise, weak edges, and limited 
detail preservation. In order to overcome these limitations, we propose an algorithm that 
incorporates prior information from the U-Net model and the KL divergence through a regular 
term. This enables us to improve the robustness of the algorithm to asymmetric data, which is 
achieved by adopting a dissimilarity function based on the skew-normal distribution. By using 
the dissimilarity function based on the skew-normal distribution, we are able to effectively 
handle asymmetric data, which is a common issue in various applications. This improves the 
overall performance of our algorithm by providing a more accurate representation of the data. 
Moreover, our method addresses another common problem encountered during small sample 
training, i.e., insufficient feature extraction by U-Net. This often leads to a reduction in 
performance. By improving the feature extraction process, our method ensures that even with 
limited training samples, a satisfactory level of performance is maintained.  Additionally, the 
prior information is leveraged to initialize the parameters of the enhanced FCM. This reduces 
the impact of initialization and results in better convergence and improved performance. To 
evaluate the efficacy of our method, we conducted experiments on both simulated brain MR 
images and real brain MR images. The results clearly demonstrate that our algorithm 
outperforms other state-of-the-art methods in terms of robustness to asymmetric form, noise, 
and intensity inhomogeneity. This highlights the effectiveness of our proposed algorithm in 
overcoming the limitations of the traditional FCM model. In the future work, wo focus on the 
outliers of the distributions of brain MR images.  
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